
Prioritizing Test Inputs for Deep Neural Networks
via Mutation Analysis

Zan Wang
College of Intelligence and Computing

Tianjin University
Tianjin, China

wangzan@tju.edu.cn

Hanmo You
College of Intelligence and Computing

Tianjin University
Tianjin, China

youhanmo@tju.edu.cn

Junjie Chen†
College of Intelligence and Computing

Tianjin University
Tianjin, China

junjiechen@tju.edu.cn

Yingyi Zhang
College of Intelligence and Computing

Tianjin University
Tianjin, China

yingyizhang@tju.edu.cn

Xuyuan Dong
Information and Network Center

Tianjin University
Tianjin, China

dongxuyuan@tju.edu.cn

Wenbin Zhang
Information and Network Center

Tianjin University
Tianjin, China

zhangwenbin@tju.edu.cn

Abstract—Deep Neural Network (DNN) testing is one of
the most widely-used ways to guarantee the quality of DNNs.
However, labeling test inputs to check the correctness of DNN
prediction is very costly, which could largely affect the efficiency
of DNN testing, even the whole process of DNN development.
To relieve the labeling-cost problem, we propose a novel test
input prioritization approach (called PRIMA) for DNNs via
intelligent mutation analysis in order to label more bug-revealing
test inputs earlier for a limited time, which facilitates to improve
the efficiency of DNN testing. PRIMA is based on the key insight:
a test input that is able to kill many mutated models and produce
different prediction results with many mutated inputs, is more
likely to reveal DNN bugs, and thus it should be prioritized
higher. After obtaining a number of mutation results from a
series of our designed model and input mutation rules for each
test input, PRIMA further incorporates learning-to-rank (a kind
of supervised machine learning to solve ranking problems) to
intelligently combine these mutation results for effective test
input prioritization. We conducted an extensive study based
on 36 popular subjects by carefully considering their diversity
from five dimensions (i.e., different domains of test inputs,
different DNN tasks, different network structures, different types
of test inputs, and different training scenarios). Our experimental
results demonstrate the effectiveness of PRIMA, significantly
outperforming the state-of-the-art approaches (with the average
improvement of 8.50%∼131.01% in terms of prioritization effec-
tiveness). In particular, we have applied PRIMA to the practical
autonomous-vehicle testing in a large motor company, and the
results on 4 real-world scene-recognition models in autonomous
vehicles further confirm the practicability of PRIMA.

Index Terms—Test Prioritization, Deep Neural Network, Mu-
tation, Label, Deep Learning Testing

I. INTRODUCTION

In recent years, deep neural networks (DNNs) have gained
great success in many domains, e.g., autonomous vehicles [1],
[2], face recognition [3], speech recognition [4], medical diag-
nosis [5], and software engineering [6]–[9] Unfortunately, like

†Junjie Chen is the corresponding author.

traditional software systems, DNNs also contain bugs [10]–
[13]. Due to the popularity and importance of DNNs, DNN
bugs could lead to serious consequences in practice, even
disasters in safety-critical domains. For example, an Uber
autonomous vehicle killed a pedestrian in Tempe, Arizona in
2018 [14]. Therefore, it is very critical to guarantee the quality
of DNNs.

DNN testing is one of the most widely-used ways to
guarantee the quality of DNNs [15]. In the literature, most
works on DNN testing focus on proposing various metrics
to measure the adequacy of test inputs [10], [11], [16] or
designing various approaches to generating test inputs [13],
[17]. However, beyond that, there is another key challenge in
the field of DNN testing — it is very costly to label test inputs
to check the correctness of DNN prediction, which could
largely affect the efficiency of DNN testing, even the whole
process of DNN development [18], [19]. More specifically,
the reasons for the labeling-cost problem are threefold: 1) The
test set is large-scale; 2) The main way of labeling is manual
analysis, which tends to involve multiple persons to label one
test input so as to ensure the labeling correctness; 3) Domain-
specific knowledge is usually required for labeling, which
makes labeling more expensive by employing professional
persons. According to the existing study [18], this challenge
is even more troublesome in practice, but currently few efforts
have been devoted to solving it.

To relieve this problem, it is intuitive to prioritize test inputs
so that those test inputs that are more likely to be incorrectly
predicted by the DNN under test (also called bug-revealing test
inputs) can be labeled earlier. In this way, more bug-revealing
test inputs can be identified for a limited time, and in the mean-
while identifying bug-revealing test inputs earlier facilitates to
conduct the debugging process earlier, which could largely
improve the efficiency of DNN testing and shorten the period
of DNN development. Indeed, some test input prioritization
approaches for DNNs have been proposed recently to solve

the labeling-cost problem [19]–[21], including coverage-based
and confidence-based test input prioritization approaches.

However, these existing approaches either suffer from the
effectiveness issue or have limited application scenarios. More
specifically, coverage-based test input prioritization, which pri-
oritizes test inputs based on their neuron coverage by adapting
the coverage-based test prioritization in traditional software
systems [22], [23], has been demonstrated to be not effective
compared with confidence-based test input prioritization in
the existing study [19]. Confidence-based test input priori-
tization, i.e., DeepGini, is the state-of-the-art approach for
DNNs, which prioritizes test inputs for classification models
by measuring the DNN’s confidence about its classification
for each test input [19]. That is, if a DNN model outputs
more similar probabilities for all classes when classifying a test
input, it means that its confidence for classifying the test input
is less and thus the test input should have a higher priority
for labeling. Although DeepGini has been demonstrated to be
effective in some cases, it actually suffers from the issues of
limited application scenarios:

• DeepGini is designed specific to classification models, and
thus it may not be directly applicable to regression models,
which are also widely-used in practice. In the meanwhile,
it has been only evaluated on image-classification models,
and thus it is unclear whether it can still perform well on
other domains of test inputs, such as sequential data.

• The assumption of DeepGini that bug-revealing test inputs
are predicted with similar probabilities for all classes, is not
tenable in many practical cases. For example, when training
data is polluted or the training scenario is transfer learning,
the confidence of the DNN model for incorrect prediction
tends to be strong. Moreover, many adversarial input gener-
ation methods (such as C&W [24]) aim to generate the test
inputs that make the probability of the wrong class large as
much as possible, which also goes against its assumption.
In these practical cases, the performance of DeepGini can
drop largely, which has been demonstrated in our study
(Section IV-E).

Therefore, it is still desired for a more general and better test
input prioritization approach for DNNs.

To further improve the performance of test input priori-
tization for DNNs, in this paper we propose a novel test
input prioritization approach for DNNs via intelligent mutation
analysis, which is called PRIMA (PRioritizing test inputs via
Intelligent Mutation Analysis). The key insights of PRIMA
are twofold: 1) If a test input can kill many mutated models
(i.e., when the prediction result of a test input is different
between the original model and the mutated model by slightly
changing the original model, we regard that the test input
kills the mutated model), indicating that the test input can
test the model sufficiently, the test input is more likely to
reveal DNN bugs. That reflects the exploration degree of the
test input to the DNN model under test. 2) If many mutated
test inputs by slightly changing an original test input have
different prediction results with the original one on the DNN

model under test, indicating that much information of the
test input is utilized by the model, the test input is more
sensitive to capture DNN bugs. That reflects the exploration
degree to the test input itself. Based on the key insights of
exploring both DNN models and test inputs, we first design
a series of model mutation rules and input mutation rules in
PRIMA. Based on these mutation rules, PRIMA produces a
number of mutation results for each test input, and then a
follow-up challenge is how to effectively utilize these mutation
results to prioritize test inputs. In particular, different DNN
models have different characteristics and thus their ways of
utilizing mutation results to achieve the best prioritization
effectiveness could be different, further indicating the difficulty
of solving this challenge. In this paper, PRIMA incorporates
learning-to-rank [25] (a kind of supervised machine learning to
solve ranking problems) to build a ranking model, which can
effectively prioritize test inputs by intelligently learning how
to utilize mutation results for different DNN models. Based
on the prioritization result through PRIMA, the bug-revealing
test inputs can be labeled earlier so that the efficiency of
DNN testing can be largely improved and the period of DNN
development can be effectively shortened.

To evaluate the performance of PRIMA, we conducted an
extensive study based on 36 popular subjects (we call a pair of
dataset and DNN model a subject). In particular, we carefully
considered the diversity of our subjects from five dimensions,
including: 1) different domains of test inputs (i.e., images,
text, and predefined features), 2) different types of test inputs
(i.e., natural test inputs and adversarial test inputs generated
by different adversarial input generation methods), 3) different
tasks of DNN models (i.e., classification models and regression
models), 4) different network structures of DNN models (i.e.,
CNN and RNN), and 5) different training scenarios (i.e., nor-
mal training, training with polluted training data, and transfer
learning). To our best knowledge, this is the largest and the
most diverse study in this field. Our experimental results show
that PRIMA performs stably well on such diverse subjects
and significantly outperforms all the compared approaches
(with the average improvement of 8.50%∼131.01% in terms
of RAUC to be introduced in Section IV-D). For example,
PRIMA performs the best among all the studied approaches
in 94.44% cases. In particular, we have applied PRIMA to
one of the most influential company for autonomous vehicles
all over the world. Due to the company policy, we hide
its name and call it T . Our results on 4 real-world scene-
recognition subjects in autonomous vehicles further confirm
the practicability of PRIMA.

This work makes the following major contributions:
• Approach. We propose a novel test prioritization approach

for DNNs via intelligent mutation analysis. In particular, we
design a series of model and input mutation rules and adopt
learning-to-rank to intelligently combine mutation results for
effective test input prioritization.

• Study. We conduct the most large-scale study based on 36
subjects, in which the diversity of subjects is considered
carefully from five dimensions, demonstrating the effective-

ness of our proposed approach.
• Practical Evaluation. We have applied our proposed ap-

proach to one of the most influential company for au-
tonomous vehicles all over the world, further confirming
its practicability.

II. BACKGROUND AND RELATED WORK

A. DNN and DNN Testing

DNN consists of many layers, each of which contains a
large number of neurons [26]. The neurons between layers
are connected with links, each of which is equipped with a
weight. These weights are learned via the training process
based on training data. In general, DNN is divided into
Convolutional Neural Network (CNN) and Recurrent Neural
Network (RNN). DNN testing is one of the most widely-used
methods to guarantee the DNN quality [10], [11], [27]–[30]. In
DNN testing, test inputs refer to the inputs to be predicted by
the DNN model under test, which can be different forms (e.g.,
images and text) according to different domains. Regarding
test oracles in DNN testing, it is required for each test input to
manually label its ground truth. Then, it can determine whether
a test input is predicted correctly by the model by comparing
the labeled ground truth and the predicted result.

B. Test Input Prioritization for DNNs

In the literature, several test input prioritization approaches
for DNNs have been proposed to solve the labeling-cost
problem [19]–[21]. For example, the state-of-the-art approach
is DeepGini [19], which prioritizes test inputs by measuring
the DNN’s confidence for classifying each test input. More
specifically, the test inputs that are predicted with more
similar probabilities for all classes are prioritized higher.
Moreover, they implemented neuron-coverage-based test input
prioritization by adapting coverage-based test prioritization in
traditional software for comparison in the study. Besides, Byun
et al. [20] proposed to utilize more advanced metrics, i.e., sur-
prise adequacy including LSA (Likelihood-based Surprise Ad-
equacy) and DSA (Distance-based Surprise Adequacy) [31],
to prioritize test inputs for DNNs. LSA refers to the surprise
of a test input with respect to the estimated density of each
activation value in a set of activation traces for training data,
while DSA is defined by the Euclidean distance between the
activation trace for a test input and a set of activation traces
for training data. The surprise-based test input prioritization
prioritizes the test inputs with larger surprise-adequacy values
higher. Different from them, our work proposes PRIMA, a
novel and more effective test input prioritization approach for
DNNs via mutation analysis and learning-to-rank.

Furthermore, some test input selection approaches are also
proposed to improve the efficiency of DNN testing [12], [18],
[32]–[34], which aims to estimate the accuracy of a DNN
model by selecting a small set of test inputs. Different from
them, our work aims to identify more bug-revealing test inputs
earlier by prioritizing test inputs.

C. Mutation-based Test Prioritization for Traditional Software

In the field of test prioritization for traditional software [22],
[35]–[46], some mutation-based test prioritization approaches
have been proposed [47], [48]. For example, Lou et al. [47]
proposed to prioritize tests according to the number of mu-
tation faults that are killed by each test. Shin et al. [48]
also evaluated the performance of multi-objective mutation-
based test prioritization, which prioritizes tests by considering
both killed mutation faults and distinguished mutation faults.
Our proposed approach PRIMA mainly has the following
differences from them: 1) PRIMA considers to mutate both the
DNN model under test and the test inputs, while traditional
mutation-based test prioritization approaches mainly mutate
the software under test. 2) DNN models have different char-
acteristics from traditional software, and thus they have totally
different mutation rules. 3) PRIMA incorporates learning-to-
rank to intelligently utilize mutation results for test input
prioritization, which is not adopted by traditional mutation-
based approaches.

III. APPROACH

To relieve the labeling-cost problem, we propose a novel
test input prioritization approach for DNNs via intelligent
mutation analysis, called PRIMA. PRIMA considers both
model mutation and input mutation based on the following
two key insights: 1) If a test input can kill many mutated
models (by slightly changing the model under test), indicating
that the test input can test the model sufficiently, the test input
is likely to reveal DNN bugs. 2) If many mutated test inputs
from one test input (by slightly changing the test input) have
different prediction results with the original one on the model
under test, indicating that much information of the test input is
effectively utilized by the model, the test input is sensitive to
capture DNN bugs. They reflect the exploration degree of the
test input to the DNN model under test and the test input itself
respectively. Based on these key insights, PRIMA consists of
three steps: 1) we design a series of model mutation rules
and input mutation rules, and PRIMA obtains mutation results
for each test input (Section III-A); 2) PRIMA extracts a set
of features from these mutation results for each test input in
order to effectively utilize these mutation results to prioritize
test inputs (Section III-B); 3) PRIMA adopts the framework
of learning-to-rank to build a ranking model, which is able to
intelligently utilize the extracted features, for prioritizing test
inputs (Section III-C). Also, we present the usage of PRIMA
in Section III-D. Figure 1 shows the overview of PRIMA.

A. Mutation Rules

In PRIMA, we design two categories of mutation rules
based on the above key insights, i.e., model mutation and
input mutation. Model mutation is to slightly change the
DNN model under test to produce a mutated model. If a test
input produces different prediction results between the original
model and the mutated model, we regard that the test input
kills the mutated model, indicating that the slightly mutated
part is effectively tested by the test input. Input mutation is to

DNN model

validation set
for the DNN

mutation
results

input mutation

model mutation

feature
extraction

features

test set to
be labeled

model mutation

input m
utation

feature
extraction

learning
to rank

ranking model

prioritized test set

developers

ranking

labeling

Fig. 1: Overview of PRIMA

slightly change a test input to produce a mutated test input.
If the slight difference between the original test input and the
mutated test input leads to different prediction results on the
model under test, it means that the slightly mutated part is
effectively utilized by the model and is contributing to the
model. Our designed model mutation rules and input mutation
rules will be introduced in detail afterwards.

1) Model Mutation Rules: As presented in Section II-A,
neurons and weights are basic elements in DNNs. Thus fol-
lowing the existing work [49] we design four model mutation
rules (which are operated at the level of neurons rather than
layers and thus could conduct more fine-grained mutation as
presented in the existing work [49]) on them as follows:
• Neuron Activation Inverse (NAI): inverts the activation state

of a neuron by changing the sign of the neuron output before
passing it to the activation function.

• Neuron Effect Block (NEB): blocks the effect of a neuron
on the next layers by setting the neuron weights to the next
layers to be 0.

• Gauss Fuzzing (GF): adds noise to the weights of a neuron
following Gaussian distribution N (µ, δ2). If δ is large, the
added noise is large, which tends to produce an invalid
model. Thus, we set µ to be 0 and δ to be 0.1.

• Weights Shuffling (WS): shuffles the weights of a neuron
with the previous layers.
In particular, PRIMA aims to slightly change the model

under test since 1) largely changing the model is likely to
produce invalid models; 2) slight mutation is better to simulate
real bugs; 3) slight mutation is helpful to learn which parts in
the model are effectively tested by each test input. Therefore,
instead of changing all the neurons/weights, PRIMA randomly
samples x% neurons/weights for each mutation.

2) Input Mutation Rules: The test inputs of DNNs can
have different forms in different domains, such as images,
sequential data (e.g., text and speech), and predefined features
(like the inputs for traditional machine learning [50]). To
design a general and practical approach, PRIMA should be
able to handle various domains of test inputs. In particular,
PRIMA considers three popular domains, including images,
sequential data (i.e., we use text as the representative), and
predefined features, but it is easy to extend PRIMA to more

domains (to be discussed in Section VI). Due to their signif-
icant differences, we design input mutation rules for each of
the three domains based on their own characteristics.

Even though there are different mutation rules for different
domains of test inputs, they share the same high-level idea of
designing input mutation rules — changing a small part of
basic elements (such as pixels for images and characters for
text) in a test input for each mutation so as to learn how much
information in a test input is really contributing to the model
under test. That is, each mutation rule is to select a small part
of basic elements from a test input to mutate. In particular, the
mutation operators for the selected basic elements are adapted
from the widely-used operators used for generating adversarial
inputs in the corresponding domains [51]–[55]. The reason
for this idea is that if slight mutation on a test input can
change the prediction results, it means that the mutated part
is indeed utilized by the model and thus it could be sensitive
to capture the bugs in the model. The detailed mutation rules
are introduced as follows:

• Image mutation rules:
– Pixel Gauss Fuzzing (PGF): adds noise to the selected

pixels following Guassian distribution N (µ, δ2). Here,
we set µ to be 0 and δ to be 0.8.

– Pixels Shuffling (PS): shuffles the selected pixels.
– Coloring Pixel White (CPW): makes the colors of the

selected pixels become white.
– Coloring Pixel Black (CPB): makes the colors of the

selected pixels become black.
– Pixel Color Reverse (PCR): reverses the colors of the

selected pixels.
• Text mutation rules:

– Character Shuffling (CS): shuffles the selected characters.
– Character Replacement (CRL): replaces the selected char-

acters with other characters randomly selected from the
whole set.

– Character Repetition (CRE): repeats the selected charac-
ters.

• Predefined-features mutation rules:
– Discrete Value Replacement (DVR): replaces the selected

feature values with the other values randomly selected
from the whole set of discrete values.

– Continuous Value Modification (CVM): randomly in-
creases or decreases the selected feature values by e%.
To slightly mutate test inputs, we set e to be 10.

According to the designed rules, for a given test set and a
model under test, PRIMA applies each model mutation rule
to generate m mutated models and then obtains the prediction
results of each test input on all the mutated models and the
original model. Also, for each test input PRIMA applies each
input mutation rule to generate n mutated inputs and then
obtains the prediction results of all the mutated inputs and the
original input on the model under test. That is, each test input
has both model mutation results and input mutation results. In
the future, more effective mutation rules [56], [57] could be

incorporated by PRIMA.

B. Feature Extraction

After obtaining the mutation results for each test input, a
follow-up problem is how to effectively utilize these mutation
results to prioritize test inputs. To intelligently learn how
to effectively utilize these mutation results to prioritize test
inputs for different models, PRIMA adopts the framework
of learning-to-rank to build a ranking model for each DNN
model. Since learning-to-rank requires a set of features like
other supervised machine learning [25], we carefully extract a
set of features from these mutation results. In this subsection,
we present the step of feature extraction in PRIMA. More
details about the step of learning-to-rank based ranking model
building for prioritization can be found in Section III-C.

Intuitively, not only whether different prediction results
(e.g., different predicted classes for classification tasks) are
produced between an original model/input and a mutated
model/input should be considered, but also the difference
degree of the prediction results is also helpful to reflect the
bug-revealing possibility. With this intuition, we identify two
types of features from the mutation results for each test
input. Since the outputs of classification models and regression
models are different, where the former is the probabilities of a
test input belonging to each class while the latter is a number,
we first present the identified features for classification models
as below, and then adapt them to regression models.

Given a set of test inputs T = {t1, t2, . . . , ts}, a clas-
sification model under test M with g classes (denoted as
C = {c1, c2, . . . , cg}), a set of mutated models by a mutation
rule (denoted as R) MR = {MR

1 ,M
R
2 , . . . ,M

R
m}, a set of

mutated inputs from tk by a mutation rule (denoted as r) trk =
{trk1, t

r
k2, . . . , t

r
kn}, the predicted probabilities by tk on M and

MR
j denoted as P [tkM] = {p[tkM]1, p[tkM]2, . . . , p[tkM]g}

and P [tkM
R
j] = {p[tkMR

j]1, p[tkM
R
j]2, . . . , p[tkM

R
j]g} and

the corresponding predicted classes denoted as C[tkM] and
C[tkM

R
j] respectively, the predicted probabilities by trki on

M denoted as P [trkiM] = {p[trkiM]1, p[t
r
kiM]2, . . . , p[t

r
kiM]g}

and the corresponding predicted class denoted as C[trkiM], the
features of a test input tk for M are presented as follows:

• F1: Features from the mutation results in which C[tkM] is
different from C[tkM

R
j] (1≤j≤m) or C[trkiM] (1≤i≤n) for

each mutation rule:
– F a

1 : The number of mutants where C[tkMR
j] (or C[trkiM])

is different from C[tkM] for each model (or input)
mutation rule.

– F b
1 : The size of the set {C[tkMR

j] (or C[trkiM]) |
C[tkM

R
j] (or C[trkiM]) is different from C[tkM]} for

each model (or input) mutation rule. This reflects the bug-
revealing diversity for the test input.

– F c
1 : The number of mutants where C[tkMR

j] (or C[trkiM])
is the class that the largest number of mutants predicts
and is different from C[tkM] for each model (or input)
mutation rule. This reflects the distribution of different
predicted classes by these mutants to some degree.

• F2: Features from the difference degree between P [tkMR
j]

(1≤j≤m) or P [trkiM] (1≤i≤n) and P [tkM] for each muta-
tion rule:
– F a

2 : The average difference degree between P [tkM
R
j]

(or P [trkiM]) and P [tkM], which is calculated by∑m
j=1 dist(P [tkM

R
j],P [tkM])

m (or
∑n

i=1 dist(P [trkiM],P [tkM])

n) for
each model (or input) mutation rule, where dist is the
cosine distance.

– F b
2 : The distribution of all the difference degrees between
P [tkM

R
j] (or P [trkiM]) and P [tkM] for each model (or

input) mutation rule. We split 10 equal intervals in [0, 1],
and then count the number of the mutants in each interval
according to their difference degrees.

– F c
2 : The average difference between the probability of
C[tkM] and the probability of this class predicted by
mutants for each mutation rule. The reason for this feature
is that the changing probability for the predicted class by
the original model and input is more relevant to the bug-
revealing possibility.

Since regression models output a number rather than a
class (with a list of class probabilities), we cannot extract
the features like F1, but only extract the features from the
difference degree of the prediction results for each test input,
including 1) the average difference of the prediction results
between the original model and input and the mutants for each
mutation rule, where the difference is the absolute difference
between the prediction results; and 2) the distribution of the
differences for each mutation rule, where we first normalize
all the differences to [0, 1] according to the output range of
the regression model under test, then split 10 equal intervals
in [0, 1], and finally count the number of the mutants in each
interval according to their normalized differences.

C. Learning-to-Rank based Ranking Model Building

Based on the set of features, PRIMA constructs a training
set for learning-to-rank, where each instance is an input
of the DNN model under test. For each instance, PRIMA
extracts the above features from its corresponding mutation
results, and labels it as 0 or 1 for a classification model
according to whether the input is incorrectly predicted by the
model under test. For a regression model, PRIMA labels each
instance as the absolute difference between its prediction result
and the ground-truth, where the larger difference indicates a
larger bug-revealing possibility to some degree. Then, PRIMA
normalizes the features to adjust values measured on different
scales to a common scale. Since all the features are numeric
type, PRIMA normalizes each value of these features into [0, 1]
using min-max normalization [58]. Suppose the set of training
instances is denoted as A = {a1, a2, . . . , au} and the set of
features is denoted as F = {f1, f2, . . . , fv}, we use xij to
represent the value of the feature fj for the instance ai before
normalization and use x∗ij to represent the value of the feature
fj for the instance ai after normalization (1 ≤ i ≤ u and
1 ≤ j ≤ v). Formula 1 presents the normalization process.

x∗ij =
xij −min({xkj |1 ≤ k ≤ u})

max({xkj |1 ≤ k ≤ u})−min({xkj |1 ≤ k ≤ u}) (1)

After obtaining the processed training set, PRIMA adopts
the framework of learning-to-rank, which is a kind of su-
pervised machine learning and has been widely used to
solve ranking problems in many domains such as document
retrieval [59] and expert search [60], to build a ranking model
for prioritizing test inputs. In this way, the mutation results
can be intelligently utilized to achieve the best prioritization
effectiveness for different models. In particular, PRIMA adopts
the XGBoost ranking algorithm [61], which is an optimized
distributed gradient boosting learning algorithm, to build the
learning-to-rank based ranking model. The reasons using this
learning-to-rank algorithm are fourfold: 1) The labels in our
training set for classification models are 0 or 1, which is
actually the labels for classification. In particular, the XG-
Boost ranking algorithm is good at handling the classification
labels for ranking tasks by effectively searching for optimal
splits [61]. 2) It is able to effectively learn more complex
features from basic features using tree ensemble models, which
matches our problem well. 3) It has been demonstrated to be
effective and efficient compared with other popular learning-
to-rank algorithms [61]. 4) It makes the ranking results inter-
pretable by measuring the contribution of each feature to the
ranking model.

D. Usage of PRIMA
Based on the ranking model, PRIMA predicts a score for

each test input in a test set and then prioritizes all these test
inputs according to the descending order of their scores. In
particular, before prediction through the ranking model, it is
also required to extract features for each test input in the test
set from its corresponding mutation results.

During the practical usage of PRIMA, we use the validation
set for the DNN model under test as the training set for build-
ing a ranking model through learning-to-rank, since the ground
truth whether each input in the validation set is predicted
correctly is known and the validation set is independent with
both training and test sets for the DNN model. After building
a ranking model for the DNN model under test based on its
validation set, PRIMA can use this ranking model to prioritize
various test sets for the DNN model. That is, for a DNN
model under test, the ranking model is built once based on its
validation set and then can be constantly used for prioritizing
its different sets of test inputs, whose stable effectiveness has
been demonstrated in our study (Section IV-E).

IV. EXPERIMENTAL STUDY DESIGN

In the study, we address two research questions. RQ1 is
to investigate the effectiveness of PRIMA compared with the
existing approaches. Also, we analyzed the contributions of
our extracted features to the overall effectiveness of PRIMA in
order to further interpret its effectiveness. RQ2 is to investigate
the efficiency of PRIMA. Also, we explored how to further
improve its efficiency.

A. Subjects

In our study, we used 36 pairs of datasets and DNN
models as subjects. Table I presents their basic information. In
particular, to sufficiently evaluate the effectiveness of PRIMA,
we carefully considered the diversity of subjects from five
dimensions. To our best knowledge, this is the most large-
scale and diverse study in the field.
(1) Different domains of test inputs. We considered three
domains of test inputs, including images, text, and predefined
features. More specifically, we collected 8 image datasets, i.e.,
CIFAR-10 (a 10-class ubiquitous object dataset [62]), CIFAR-
100 (a 100-class ubiquitous object dataset [62]), MNIST (a
handwritten digit dataset [63]), MNIST_VS_USPS (a hand-
written digit dataset for transfer learning [64]), COIL (a 20-
class object recognition dataset for transfer learning [65]),
PIE27_VS_PIE5 (a face dataset for transfer learning [66]),
PIE27_VS_PIE9 (a face dataset for transfer learning [66]), and
Driving (an autonomous driving dataset provided by Udacity
[67]), 5 text datasets, i.e., TREC (a question classification
dataset [68]), IMDB (a large movie review dataset for binary
sentiment classification [69]), SMS Spam (a mobile phone
spam messages dataset [70]), CoLA (a linguistic acceptability
dataset [71]), and Hate Speech (a hate speech and offensive
language collection dataset [72]), and one dataset with prede-
fined features, i.e., KDDCUP99 (a network intrusion informa-
tion dataset provided by a competition in KDD’99 [73]).
(2) Different tasks of DNN models. We considered both clas-
sification models (ID: 1∼24, 31∼36) and regression models
(ID: 25∼30). The number of classes ranges from 2 to 100
across all the classification models.
(3) Different network structures of DNN models. We
considered both CNN (ID: 1∼30, 36) and RNN (ID: 31∼35).
The number of layers ranges from 5 to 100 and the number of
weights ranges from 16K to 20,081K across all the models.
(4) Different types of test inputs. We considered both natural
test inputs and adversarial test inputs. Here, we adopted three
widely-used adversarial input generation methods, i.e., C&W
(Carlini&Wagner) [24], BIM (Basic Iterative Methods) [74],
and JSMA (Jacobian-based Saliency Map Attack) [75]. Be-
sides the original test set (i.e., the set of natural test inputs),
following the existing work [18], [19] we also constructed
mixed test sets by mixing natural test inputs and adversarial
test inputs. More specifically, for each adversarial input gen-
eration method, we first generated the same number of adver-
sarial test inputs as the corresponding natural test inputs for
CIFAR-10 and CIFAR-100, respectively. Then, we randomly
selected half of natural test inputs and half of adversarial test
inputs to construct a mixed test set for each of the two datasets
under each adversarial input generation method. That is, we
had both original test sets and mixed test sets in our study. In
this way, we had four different test sets for each of them (i.e.,
VGG-16 based on CIFAR-10, ResNet-20 based on CIFAR-10,
VGG-19 based on CIFAR-100, ResNet-32 based on CIFAR-
100) respectively, which can be used to investigate whether
PRIMA performs well for different test sets when building the

TABLE I: Basic information of subjects

ID Dataset Model #Test Type Domain

1 CIFAR-10 VGG-16 10,000 original image
2 CIFAR-10 VGG-16 10,000 +BIM image
3 CIFAR-10 VGG-16 10,000 +C&W image
4 CIFAR-10 VGG-16 10,000 +JSMA image
5 CIFAR-10 ResNet-20 10,000 original image
6 CIFAR-10 ResNet-20 10,000 +BIM image
7 CIFAR-10 ResNet-20 10,000 +C&W image
8 CIFAR-10 ResNet-20 10,000 +JSMA image
9 CIFAR-100 VGG-19 10,000 original image
10 CIFAR-100 VGG-19 10,000 +BIM image
11 CIFAR-100 VGG-19 10,000 +C&W image
12 CIFAR-100 VGG-19 10,000 +JSMA image
13 CIFAR-100 ResNet-32 10,000 original image
14 CIFAR-100 ResNet-32 10,000 +BIM image
15 CIFAR-100 ResNet-32 10,000 +C&W image
16 CIFAR-100 ResNet-32 10,000 +JSMA image
17 MNIST LeNet-5 10,000 original image
18 MNIST-M1 LeNet-5 10,000 original image
19 MNIST-M2 LeNet-5 10,000 original image
20 MNIST-M3 LeNet-5 10,000 original image
21 MNIST_VS_USPS LeNet-5 1,800 original image
22 COIL VGG-11 1,000 original image
23 PIE27_VS_PIE5 VGG-11 3,332 original image
24 PIE27_VS_PIE9 VGG-11 1,632 original image
25 Driving Dave-orig 5,614 original image
26 Driving Dave-drop 5,614 original image
27 Driving Dave-orig 5,614 light image
28 Driving Dave-drop 5,614 light image
29 Driving Dave-orig 5,614 patch image
30 Driving Dave-drop 5,614 patch image
31 TREC Bi-LSTM 952 original text
32 IMDB Bi-LSTM 15,000 original text
33 SMS Spam Bi-LSTM 3,000 original text
34 CoLA Bi-LSTM 4,000 original text
35 Hate Speech Bi-LSTM 14,652 original text
36 KDDCUP99 CNN 311,027 original features

ranking model once (as presented in Section III-D). Besides,
regarding Dave-orig and Dave-drop, we also have three test
sets respectively, i.e., the original one, the patched test sets
(blocking some parts of each test input), and the lighted test
sets (changing the intensities of lights for each test input).
(5) Different training scenarios. We considered three training
scenarios. The first one is the normal training scenario for a
dataset and a DNN model. The second one is the training
scenario with polluted training sets that are mutated by an
accident or malicious attack (ID: 18∼20). In particular, we
simulated this training scenario by adopting three polluted
training sets from MNIST, which are widely-used by the
existing work [12], [18]. More specifically, the three polluted
training sets are produced by changing the labels of training
inputs, i.e., 8⇔0, 7⇔1, and 9⇔3, respectively. The third one
is the transfer-learning scenario (ID: 21∼24), which trains a
model based on a training set for solving a problem and then
applies this model to a different but related problem.

B. Compared Approaches

In our study, we considered three compared approaches, i.e.,
the state-of-the-art approach DeepGini and two surprise-based
test input prioritization approaches (LSA-based and DSA-
based approaches, denoted as LSA and DSA in this paper re-
spectively). More details about these compared approaches can

be found in Section II-B. In the existing study [19], neuron-
coverage-based test input prioritization has been compared
with DeepGini, where the latter outperforms the former. There-
fore, we did not compare with the former in our study. How-
ever, more advanced metrics, i.e., surprise adequacy including
LSA and DSA, have been used for prioritizing DNN test inputs
but the surprise-based test input prioritization approaches have
not been studied together with DeepGini. Therefore, we also
used the surprise-based test input prioritization for comparison.

Please note that DeepGini and DSA could not directly apply
to regression models. Therefore, we applied all the compared
approaches to classification models and applied only LSA to
regression models for comparison. Since LSA crashes when
running on subjects 34∼36 due to lacking data points of
certain classes (which has been confirmed by the authors of
LSA), we do not include the results of LSA on these subjects.

C. Implementation and Configuration

We implemented PRIMA in Python based on Keras
2.3.1 [76] and XGBoost 1.1.1 [61], and adopted the existing
implementations of all the compared approaches, which are
released by the corresponding work [19], [31]. Regarding our
mutation rules, we set the number of model mutants m to be
100 and the percentage of neurons/weights selected x to be
10 for model mutation. For input mutation, we set the number
of selected basic elements to be 1 and the number of input
mutants n to be 50 in the domains of text and pre-defined
features, while we set the number of selected pixels to be
0.5% of the total number of pixels and n to be 200 in the
domains of images. Here, we selected a relatively small part of
basic elements to mutate in order to achieve slight mutation.
We set them by conducting a preliminary study based on a
small dataset, and found that such settings are effective in
general. Also, for the XGBoost ranking algorithm in PRIMA,
we set learning_rate to be 0.05, colsample_bytree to be 0.5,
and max_depth to be 5. In particular, the XGBoost ranking
algorithm is robust to parameter selection [61], [77]. We also
investigated the influence of main parameters on PRIMA,
which will be presented in Section VI-B.

As presented in Section III-D, for each subject, PRIMA uses
the validation set to build a ranking model and then prioritizes
test sets using the built ranking model. For the subjects whose
validation sets are not available, we simulated a validation set
by randomly selecting a set of inputs from the original test
set and then prioritized the remaining inputs in the test set for
each of these subjects.

Our experiments are conducted on the Intel Xeon Silver-
4214 machine with 128GB RAM, Ubuntu 18.04, and 8 RTX
1080 Ti GPUs in parallel. Our code and experimental data
can be found on our project homepage: https://github.com/
sail-repos/PRIMA.

D. Measurements

To measure the prioritization effectiveness, following the
existing work [20] we transformed the prioritization result
produced by a test input prioritization approach for a subject

to a figure. For classification models, the x-axis of the figure
is the number of prioritized test inputs and the y-axis is
the number of bug-revealing test inputs, while for regression
models the x-axis of the figure is also the number of prioritized
test inputs but the y-axis is the accumulated difference between
the predicted results and the ground-truth. Then, we calculated
the ratio of the area under curve for the test input prioritization
approach to the area under the curve of the ideal prioritization
as the metric. We call this metric RAUC. Larger is better.

In particular, since labeling test inputs is very costly and
the resources are limited, it is better if more bug-revealing
test inputs can be identified when labeling fewer test inputs.
Therefore, we used RAUC-n, which refers to the RAUC
for the first n prioritized test inputs, as the measurement
to measure the prioritization effectiveness in our study. This
measurement reflects the prioritization effectiveness under the
given number of test inputs to be labelled. In our study, we
considered n to be 100, 200, 300, and 500 respectively since
the resources tend to be limited and thus the given number of
test inputs to be labelled tends to be small. Here, we denote
their RAUC-n as RAUC-100, RAUC-200, RAUC-300, and
RAUC-500, respectively. We also presented the prioritization
effectiveness on all the test inputs for each subject, denoted
as RAUC-all. In particular, the results when n is set to be
larger (e.g., 1000) can be found on our project homepage.
Also, we will explain the reason why not use the widely-used
APFD [78] in traditional test prioritization as the measurement
in our study in Section VI-C.

Also, we measured the prioritization efficiency for each test
input prioritization approach. In our study, we used the time
spent on test input prioritization as the metric.

E. Results and Analysis

1) RQ1: Effectiveness of PRIMA: We first studied the
prioritization effectiveness of PRIMA.
•Overall effectiveness. Since the number of subjects used
in our study is large and the space is limited, we put the
detailed comparison results for each subject on our project
homepage. We present the overall comparison results across
all the subjects in Table II. Since DeepGini and DSA could
not directly apply to regression models, we separately present
the overall comparison results on classification models and
regression models. Among 180 (36 subjects * 5 metrics)
cases, PRIMA performs the best in 94.44% (170 out of 180)
cases, where Deepgini performs the best in 5.56% (10 out
of 180) cases and LSA and DSA cannot perform the best
in any case. In terms of all the used metrics, the average
results of PRIMA on classification models range from 0.868 to
0.919 with the average improvements of 8.50%∼18.24% com-
pared with DeepGini, 34.16%∼57.17% compared with LSA,
and 27.29%∼40.23%, respectively. On regression models, the
average results of PRIMA range from 0.779 to 0.808 with
the average improvements of 17.27%∼131.01% compared
with LSA. In particular, we conducted statistical analysis to
investigate whether PRIMA significantly outperforms all the
compared approaches by conducting the Wilcoxon Signed-

Rank Test [79] in terms of each metric at the significance
level 0.05. We found that all the p values are smaller than
0.05, indicating that PRIMA significantly outperforms all the
compared approaches in terms of all the metrics in statistics.
The results demonstrate the effectiveness of PRIMA.
•Effectiveness on different domains of test inputs. Table III
shows the effectiveness of PRIMA on different domains of test
inputs (i.e., images, text, and predefined features). We found
that, PRIMA outperforms all the compared approaches on all
the three domains in terms of various metrics. In particular,
this is also the first time to study these compared approaches
in the domains of text and predefined features. We found that
PRIMA largely outperforms DeepGini, LSA, and DSA with
the average improvements of 39.17%, 321.68%, and 47.99% in
terms of RAUC-100 in the domain of text. Also, the average
RAUC-All value of PRIMA achieves 0.966 while those of
DeepGini and DSA are only 0.743 and 0.730 respectively in
the domain of predefined features. The results demonstrate the
stable effectiveness of PRIMA in various domains.
•Effectiveness on polluted training and transfer learning.
As presented in Section I, the assumption of DeepGini can be
violated in many practical scenarios, causing its effectiveness
drops largely. In this paper, we are the first to study these
approaches in two practical scenarios, i.e., polluted training
and transfer learning scenarios, whose results are shown in
Table IV. We found that PRIMA largely outperforms all the
compared approaches in terms of all the metrics in both
training scenarios. In the polluted training scenario, the av-
erage results of PRIMA in terms of all these metrics range
from 0.983 to 1 while those of DeepGini only range from
0.443 to 0.583. In the transfer learning scenario, the average
results of PRIMA in terms of all these metrics range from
0.859 to 0.919 while those of DeepGini only range from
0.740 to 0.849. The results confirm our claims in Section I,
demonstrating that the assumption of DeepGini is not tenable
in the two practical scenarios, especially the polluted training
scenario. Moreover, the results further demonstrate the stable
effectiveness of PRIMA in various practical scenarios.
•Effectiveness on different types of test inputs. We further
investigated the effectiveness of PRIMA on different types
of test inputs (i.e., natural test inputs and adversarial test
inputs), which can also answer whether once one ranking
model through PRIMA is built for a DNN model, it can
perform well for various test sets of the DNN model. Due
to the space limit, we used CIFAR-100 and VGG-19 (ID:
9∼12) as the representative and the conclusion holds for other
subjects. From Table V, PRIMA performs the best among all
the approaches for the four test sets in terms of various metrics.
In particular, the RAUC-100 values of PRIMA achieve 0.977,
0.988, 0.972, and 0.981, respectively, demonstrating the stable
effectiveness of PRIMA on different types of test inputs. That
also demonstrates, for a DNN model under test, the built
ranking model through PRIMA is not necessary to be retrained
frequently since it can perform rather stably on different test
sets, which indicates the practicability of PRIMA.
•Feature contribution. The ranking model in PRIMA is built

TABLE II: Overall comparison results across all the subjects

Approach #Best cases in RAUC- Average RAUC- Improvement of PRIMA (%) in RAUC-
100 200 300 500 All 100 200 300 500 All 100 200 300 500 All

C

DeepGini 2 2 2 1 3 0.751 0.753 0.752 0.755 0.847 18.24 16.47 15.69 14.97 8.50
LSA 0 0 0 0 0 0.568 0.558 0.559 0.571 0.685 56.34 57.17 55.64 52.01 34.16
DSA 0 0 0 0 0 0.648 0.632 0.625 0.619 0.722 37.04 38.77 39.20 40.23 27.29
PRIMA 28 28 28 29 27 0.888 0.877 0.870 0.868 0.919 - - - - -

R LSA 0 0 0 0 0 0.345 0.357 0.368 0.394 0.689 131.01 122.97 114.67 97.72 17.27
PRIMA 6 6 6 6 6 0.797 0.796 0.790 0.779 0.808 - - - - -

* Rows “C” and “R” present the overall results on classification and regression models, respectively. Columns 3-7 present the number of
subjects where each approach performs the best in terms of each metric, Columns 8-12 present the average results across all the subjects in
terms of each metric, and Column 13-27 present the average improvement of PRIMA over each compared approach in terms of each metric.

TABLE III: Comparison on different domains of test inputs

Domain Approach Average RAUC-
100 200 300 500 All

Image

DeepGini 0.796 0.798 0.796 0.796 0.867
LSA 0.564 0.551 0.549 0.555 0.688
DSA 0.688 0.669 0.659 0.651 0.730
PRIMA 0.898 0.892 0.888 0.886 0.916

Text

DeepGini 0.503 0.502 0.507 0.529 0.771
LSA 0.166 0.225 0.281 0.376 0.670
DSA 0.473 0.490 0.509 0.529 0.715
PRIMA 0.700 0.668 0.647 0.635 0.799

Features

DeepGini 0.899 0.920 0.920 0.922 0.743
LSA - - - - -
DSA 0.688 0.669 0.659 0.651 0.730
PRIMA 1.000 0.999 0.976 0.956 0.966

TABLE IV: Comparison on polluted and transfer learning

Scenario Approach Average RAUC-
100 200 300 500 All

Polluted

DeepGini 0.561 0.512 0.484 0.443 0.583
LSA 0.491 0.444 0.405 0.351 0.489
DSA 0.607 0.528 0.485 0.432 0.551
PRIMA 1.000 1.000 1.000 0.999 0.983

Transfer

DeepGini 0.760 0.753 0.740 0.754 0.849
LSA 0.292 0.322 0.356 0.431 0.593
DSA 0.537 0.526 0.521 0.540 0.687
PRIMA 0.924 0.896 0.867 0.859 0.919

via the XGBoost ranking algorithm, which is interpretable
by providing the contribution of each feature to the ranking
model. Due to the limited space, we show Top-10 features
with the largest contributions on average across all the image-
classification subjects in Table VI. We found that Top-10
features contain both categories of features (presented in Sec-
tion III-B) and contain both model and input mutation rules,
demonstrating the rationality of PRIMA in design. Moreover,
for the image-classification subjects, model mutation seems to
make more contributions than input mutation, and NEB and
NAI contribute more than the other model mutation rules while
PS and PGF contribute more than the other input mutation
rules, which can guide us to optimize PRIMA in order to
further improve its effectiveness and efficiency.

TABLE V: Comparison on different types of test inputs

ID Approach RAUC-
100 200 300 500 All

9

DeepGini 0.870 0.884 0.885 0.889 0.888
LSA 0.643 0.590 0.567 0.542 0.623
DSA 0.715 0.720 0.707 0.684 0.737
PRIMA 0.977 0.960 0.947 0.931 0.901

10

DeepGini 0.874 0.835 0.821 0.804 0.778
LSA 0.913 0.909 0.909 0.902 0.848
DSA 0.918 0.945 0.947 0.949 0.949
PRIMA 0.988 0.984 0.983 0.983 0.953

11

DeepGini 0.905 0.927 0.933 0.942 0.897
LSA 0.888 0.857 0.841 0.824 0.779
DSA 0.884 0.879 0.880 0.878 0.847
PRIMA 0.972 0.974 0.975 0.973 0.909

12

DeepGini 0.930 0.950 0.955 0.957 0.943
LSA 0.957 0.928 0.919 0.905 0.808
DSA 0.959 0.942 0.935 0.924 0.865
PRIMA 0.981 0.979 0.980 0.979 0.945

TABLE VI: Top-10 features in terms of the average contribu-
tion across all the image-classification subjects

Rank Rule Feature Score Rank Rule Feature Score

1 NEB F c
2 0.051 2 NEB F a

1 0.044
3 NAI F b

2 (0, 0.1) 0.035 4 GF F a
1 0.032

5 PS F c
2 0.031 6 NEB F b

2 (0, 0.1) 0.029
7 NEB F a

2 0.025 8 PGF F b
2 (0.2, 0.3) 0.025

9 NAI F a
1 0.022 10 PGF F c

2 0.021
* F b

2 (0, 0.1) and F b
2 (0.2, 0.3) refer to the feature F b

2 in intervals [0, 0.1) and
[0.2, 0.3) respectively.

To sum up, PRIMA outperforms all the compared ap-
proaches in general, on different tasks of DNN models,
different domains of test inputs, different training scenarios,
and different types of test inputs.

2) RQ2: Efficiency of PRIMA: We investigated the effi-
ciency of PRIMA in Table VII. As DeepGini and DSA cannot
apply to regression models, we compared these approaches in
terms of efficiency on all the classification subjects (subjects
34∼36 are not included for LSA as explained in Section IV-B).
The average time spent on test prioritization of PRIMA is 10.1
minutes while that of DeepGini is only 0.1 minutes. Although
PRIMA is less efficient than DeepGini, the cost of PRIMA is

TABLE VII: Efficiency comparison across all the classification
subjects (in minutes)

Approach Mean Std. Min. Max.

DeepGini 0.1 0.1 < 0.1 1.4
LSA 1.5 1.0 < 0.1 2.8
DSA 23.5 110.1 < 0.1 616.2
PRIMA 10.4 6.2 2.4 27.7

still acceptable in practice compared with the time-consuming
and expensive manual labeling, which has been confirmed by
our industry partners in Section V.

Actually, there is a promising direction to further improve
the efficiency of PRIMA. As shown in Table VI, some
mutation rules (e.g., NEB and NAI) tend to make more
contributions than others to the effectiveness of PRIMA in
general, indicating their different influence on PRIMA to some
degree. Thus, if we only keep the mutation rules making more
contributions in PRIMA, the effectiveness of PRIMA could be
affected slightly while its efficiency could be improved largely.
To explore the feasibility of this direction, we conducted a
preliminary study by taking subject 10 as an example. The
results show that, with only these top mutation rules (listed in
Table VI), the efficiency of PRIMA is improved by 38.81%
while its effectiveness only decreases less than 0.02 in terms of
RAUC-100, demonstrating this direction is indeed promising.

To sum up, PRIMA is less efficient than DeepGini but
its cost is still acceptable. Moreover, selecting and using the
mutation rules making more contributions could improve the
efficiency of PRIMA without much effectiveness loss.

V. PRACTICAL EVALUATION

PRIMA has been applied to the practical autonomous-
vehicle testing in a large motor company, which is one of the
most influential company for autonomous vehicles all over the
world. Due to the company policy, we hide the company name
and call it T in this paper. This company has a large number
of DNN models built by themselves for autonomous vehicles,
as well as a large number of test inputs to test these models.
In particular, all these test inputs are required to be labeled
manually, which is very time-consuming and expensive. This
company even has established a specialized department to
finish the labeling task. PRIMA aims to solve the labeling-cost
problem and improve the efficiency of DNN testing, which
admirably serves their needs.

We have evaluated the effectiveness of PRIMA based on
three real-world DNN models used for traffic scene recognition
in autonomous vehicles in T . For ease of presentation, we
call the three DNN models M1, M2, and M3 respectively.
M1 is a binary classification model (detecting lane-changing
behaviours of ego vehicles) with one test set (denoted as
M1t), whose size is larger than 50K. M2 is a classification
model with four classes (recognizing different lane-changing
scenarios) and it has one test set (denoted as M2t), whose size
is nearly 6K. M3 is a classification model with eight classes
(recognizing typical behaviours of ego vehicles) and it has two

TABLE VIII: Effectiveness on industrial subjects

ID Approach RAUC-
100 200 300 500 All

M1t
DeepGini 0.512 0.535 0.541 0.556 0.688
PRIMA 0.740 0.651 0.605 0.555 0.746

M2t
DeepGini 0.491 0.596 0.621 0.659 0.765
PRIMA 0.889 0.830 0.776 0.720 0.766

M3t1
DeepGini 0.847 0.903 0.917 0.827 0.656
PRIMA 1.000 1.000 0.987 0.857 0.651

M3t2
DeepGini 0.983 0.981 0.980 0.976 0.941
PRIMA 1.000 0.995 0.990 0.986 0.935

test sets (denoted as M3t1 and M3t2), whose sizes are larger
than 10K and 20K respectively. All of them use the RNN
structure and the form of their test inputs is predefined features
that are collected from sensors and automatically processed.
Due to the company policy, we have to hide more details about
these models and datasets.

Table VIII shows the effectiveness of PRIMA on the four
industrial subjects. Here, we compared PRIMA with the state-
of-the-art approach DeepGini (which has been demonstrated
to be much better than both LSA and DSA on open-source
subjects). We found that PRIMA also outperforms DeepGini
in terms of RAUC-100/200/300/500 on all the four indus-
trial subjects. For example, in terms of RAUC-100, PRIMA
achieves 0.740, 0.889, 1, and 1 on the four subjects with
the improvements of 44.53%, 81.06%, 18.06%, and 1.73%
respectively. The results further confirm the effectiveness of
PRIMA in practice. According to the practical evaluation,
PRIMA has been largely appreciated by the developers in T ,
and in particular they think that the automatic prioritization
cost of PRIMA is totally acceptable compared with the time-
consuming and expensive manual labeling, further confirming
the practicability of PRIMA.

VI. DISCUSSION

A. Generality of PRIMA

Our study has demonstrated the effectiveness of PRIMA
based on a large number of subjects with great diversity,
indicating the generality of PRIMA to some degree. Besides,
although we considered three domains (i.e., images, text,
and predefined features) for PRIMA in our work, PRIMA
actually can be applicable to more domains (e.g., speech) as
long as input mutation rules for the corresponding domains
are designed. As presented in Section II-C, designing input
mutation rules for different domains shares the same high-
level idea, i.e., changing a small part of basic elements in a test
input for each mutation by adapting the operators widely used
for generating adversarial inputs in the corresponding domains.
With this high-level idea, it is easy to extend PRIMA to more
domains since it is easy to determine the basic elements of
test inputs and find the widely-used operators for generating
adversarial inputs in the corresponding domains. For example,
for the speech domain, the basic element of a test input is

0.791 0.861 0.865 0.811 0.8240.791 0.861 0.865 0.811 0.8240.791 0.861 0.865 0.811 0.8240.791 0.861 0.865 0.811 0.8240.791 0.861 0.865 0.811 0.8240.791 0.861 0.865 0.811 0.824

0.00

0.25

0.50

0.75

1.00

1 3 5 7 9
max_depth

R
AU
C
−1
00 0.840 0.830 0.865 0.847 0.8340.840 0.830 0.865 0.847 0.8340.840 0.830 0.865 0.847 0.8340.840 0.830 0.865 0.847 0.8340.840 0.830 0.865 0.847 0.8340.840 0.830 0.865 0.847 0.834

0.00

0.25

0.50

0.75

1.00

0.1 0.3 0.5 0.7 0.9
colsample_bytree

R
AU
C
−1
00 0.830 0.836 0.865 0.832 0.8480.830 0.836 0.865 0.832 0.8480.830 0.836 0.865 0.832 0.8480.830 0.836 0.865 0.832 0.8480.830 0.836 0.865 0.832 0.8480.830 0.836 0.865 0.832 0.848

0.00

0.25

0.50

0.75

1.00

0.001 0.01 0.05 0.1 0.5
learning_rate

R
AU
C
−1
00

Fig. 2: Impact of main parameters in PRIMA

phoneme and the widely-used adversarial operators include
adding noise to audio signal [80] and attacking phonetically
similar phrases [81], and thus PRIMA could be easily extended
to the speech domain. That further reflects the generality of
PRIMA to some degree.

B. Impact of Main Parameters in PRIMA

We investigated the impact of main parameters in PRIMA,
including max_depth (the maximum tree depth for each
XGBoost model), colsample_bytree (the sampling ratio of
columns of features when constructing each tree) and
learning_rate (the boosting learning rate) in the XGBoost
ranking algorithm. Here, we randomly selected six subjects
(ID: 1, 4, 9, 18, 24, and 32) for this experiment by considering
different domains of test inputs, different training scenarios,
and different types of test inputs. Figure 2 shows the effec-
tiveness of PRIMA under different parameter settings in terms
of average RAUC-100 across the six subjects. We found that,
PRIMA performs stably under different parameter settings and
our default settings are also indeed proper.

C. Threats to Validity

The internal threat to validity mainly lies in the implemen-
tation of our approach PRIMA, all the compared approaches,
and experimental scripts. To reduce this threat, we adopted
the implementations of the compared approaches released by
the authors, implemented PRIMA based on popular libraries
(presented in Section IV-C), and carefully checked the code
of PRIMA and experimental scripts.

The external threats to validity mainly lie in the subjects
used in our study. To reduce this threat, we collected a large
number of subjects with great diversity.

The construct threats to validity mainly lie in the parameters
in PRIMA and the measurements used in our study. To reduce
the threat from the parameters in PRIMA, we presented the
parameter settings in Section IV-C and investigated the impact
of main parameters in Section VI-B. Regarding the measure-
ments used in our study, we measured both prioritization
effectiveness and efficiency. Here, we used RAUC as the
metric for effectiveness following the existing work [20] and
the prioritization time as the metric for efficiency. In our
study, we did not use the widely-used metric in traditional
test prioritization, i.e., APFD [78] to measure the prioritization
effectiveness. This is because when the accuracy of a model on
a test set is low (i.e., there are a large number of bug-revealing
test inputs), the upper bound of APFD could be much smaller

than 1, which may affect the comparison among the subjects
with very different accuracy.

VII. CONCLUSION

To solve the labeling-cost problem in DNN testing, we
propose a novel test input prioritization approach, called
PRIMA, to prioritize bug-revealing test inputs higher. PRIMA
is based on mutation analysis and learning-to-rank. Its insight
is that a test input that can kill many mutated models and
produce different prediction results with many mutated inputs,
is more likely to reveal DNN bugs, and thus it should have
a higher priority for labeling. After obtaining a number of
mutation results via our designed model and input rules,
PRIMA incorporates learning-to-rank to build a ranking model
by intelligently combining these mutation results for test input
prioritization. Our results on 36 diverse subjects demonstrate
the effectiveness of PRIMA and it significantly outperforms
the state-of-the-art approaches. Moreover, PRIMA has been
applied to practical autonomous-vehicle testing in a large
motor company and the results on 4 industrial subjects further
demonstrate its effectiveness in practice.

ACKNOWLEDGMENT

This work is partially supported by the National Natural
Science Foundation of China 62002256 and 61872263, and
Intelligent Manufacturing Special Fund of Tianjin 20193155,
and the Fund No. 2020-JCJQ-JJ-490.

REFERENCES

[1] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning
affordance for direct perception in autonomous driving,” in Proceedings
of the IEEE International Conference on Computer Vision. IEEE, 2015,
pp. 2722–2730.

[2] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: automated testing
of deep-neural-network-driven autonomous cars,” in Proceedings of the
40th International Conference on Software Engineering. ACM, 2018,
pp. 303–314.

[3] Y. Sun, Y. Chen, X. Wang, and X. Tang, “Deep learning face rep-
resentation by joint identification-verification,” in Advances in neural
information processing systems, 2014, pp. 1988–1996.

[4] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg,
C. Case, J. Casper, B. Catanzaro, Q. Cheng, G. Chen et al., “Deep
speech 2: End-to-end speech recognition in english and mandarin,” in
International Conference on Machine Learning, 2016, pp. 173–182.

[5] Z. Obermeyer and E. J. Emanuel, “Predicting the future—big data,
machine learning, and clinical medicine,” The New England journal of
medicine, vol. 375, no. 13, p. 1216, 2016.

[6] J. Chen, X. He, Q. Lin, H. Zhang, D. Hao, F. Gao, Z. Xu, Y. Dang, and
D. Zhang, “Continuous incident triage for large-scale online service sys-
tems,” in 2019 34th IEEE/ACM International Conference on Automated
Software Engineering. IEEE, 2019, pp. 364–375.

[7] J. Chen, X. He, Q. Lin, Y. Xu, H. Zhang, D. Hao, F. Gao, Z. Xu, Y. Dang,
and D. Zhang, “An empirical investigation of incident triage for online
service systems,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering in Practice. IEEE, 2019,
pp. 111–120.

[8] J. Chen, S. Zhang, X. He, Q. Lin, H. Zhang, D. Hao, Y. Kang, F. Gao,
Z. Xu, Y. Dang et al., “How incidental are the incidents? characterizing
and prioritizing incidents for large-scale online service systems,” in
2020 35th IEEE/ACM International Conference on Automated Software
Engineering. IEEE, 2020, pp. 373–384.

[9] L. Yang, J. Chen, Z. Wang, W. Wang, J. Jiang, X. Dong, and W. Zhang,
“Semi-supervised log-based anomaly detection via probabilistic label
estimation,” in The 43rd International Conference on Software Engi-
neering. IEEE, 2021, to appear.

[10] L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen,
T. Su, L. Li, Y. Liu et al., “Deepgauge: Multi-granularity testing criteria
for deep learning systems,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. ACM,
2018, pp. 120–131.

[11] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in Proceedings of the 26th Symposium
on Operating Systems Principles. ACM, 2017, pp. 1–18.

[12] Z. Li, X. Ma, C. Xu, C. Cao, J. Xu, and J. Lü, “Boosting operational
dnn testing efficiency through conditioning,” in Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. ACM,
2019, pp. 499–509.

[13] Y. Sun, M. Wu, W. Ruan, X. Huang, M. Kwiatkowska, and D. Kroening,
“Concolic testing for deep neural networks,” in Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineer-
ing. ACM, 2018, pp. 109–119.

[14] “News,” Accessed: 2020. [Online]. Avail-
able: https://www.vice.com/en_us/article/9kga85/
uber-is-giving-up-on-self-driving-cars-in-california-after-deadly-crash

[15] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning testing:
Survey, landscapes and horizons,” CoRR, vol. abs/1906.10742, 2019.

[16] J. Chen, M. Yan, Z. Wang, Y. Kang, and Z. Wu, “Deep neural network
test coverage: How far are we?” arXiv preprint arXiv:2010.04946, 2020.

[17] X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao,
B. Li, J. Yin, and S. See, “Deephunter: a coverage-guided fuzz testing
framework for deep neural networks,” in Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis.
ACM, 2019, pp. 146–157.

[18] J. Chen, Z. Wu, Z. Wang, H. You, L. Zhang, and M. Yan, “Practical
accuracy estimation for efficient dnn testing,” ACM Transactions on
Software Engineering and Methodology, 2020, to appear.

[19] Y. Feng, Q. Shi, X. Gao, J. Wan, C. Fang, and Z. Chen, “Deepgini:
prioritizing massive tests to enhance the robustness of deep neural
networks,” in 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis. ACM, 2020, pp. 177–188.

[20] T. Byun, V. Sharma, A. Vijayakumar, S. Rayadurgam, and D. D. Cofer,
“Input prioritization for testing neural networks,” in IEEE International
Conference On Artificial Intelligence Testing. IEEE, 2019, pp. 63–70.

[21] L. Zhang, X. Sun, Y. Li, and Z. Zhang, “A noise-sensitivity-analysis-
based test prioritization technique for deep neural networks,” CoRR, vol.
abs/1901.00054, 2019.

[22] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: a survey,” Softw. Test. Verification Reliab., vol. 22, no. 2,
pp. 67–120, 2012.

[23] Y. Lou, J. Chen, L. Zhang, and D. Hao, “Chapter one - A survey on
regression test-case prioritization,” Adv. Comput., vol. 113, pp. 1–46,
2019.

[24] N. Carlini and D. A. Wagner, “Towards evaluating the robustness of
neural networks,” in 2017 IEEE Symposium on Security and Privacy,
2017, pp. 39–57.

[25] T.-Y. Liu, Learning to rank for information retrieval. Springer Science
& Business Media, 2011.

[26] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A
survey of deep neural network architectures and their applications,”
Neurocomputing, vol. 234, pp. 11–26, 2017.

[27] X. Xie, J. W. K. Ho, C. Murphy, G. E. Kaiser, B. Xu, and T. Y. Chen,
“Testing and validating machine learning classifiers by metamorphic
testing,” J. Syst. Softw., vol. 84, no. 4, pp. 544–558, 2011.

[28] X. Du, X. Xie, Y. Li, L. Ma, Y. Liu, and J. Zhao, “Deepstellar:
model-based quantitative analysis of stateful deep learning systems,” in

Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2019, pp. 477–487.

[29] D. Cheng, C. Cao, C. Xu, and X. Ma, “Manifesting bugs in machine
learning code: An explorative study with mutation testing,” in 2018 IEEE
International Conference on Software Quality, Reliability and Security.
IEEE, 2018, pp. 313–324.

[30] A. Aggarwal, P. Lohia, S. Nagar, K. Dey, and D. Saha, “Black box
fairness testing of machine learning models,” in Proceedings of the
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ACM, 2019,
pp. 625–635.

[31] J. Kim, R. Feldt, and S. Yoo, “Guiding deep learning system testing
using surprise adequacy,” in Proceedings of the 41st International
Conference on Software Engineering. IEEE Press, 2019, pp. 1039–
1049.

[32] W. Ma, M. Papadakis, A. Tsakmalis, M. Cordy, and Y. L. Traon, “Test
selection for deep learning systems,” CoRR, vol. abs/1904.13195, 2019.

[33] Y. Chen, Z. Wang, D. Wang, Y. Yao, and Z. Chen, “Behavior pattern-
driven test case selection for deep neural networks,” in IEEE Interna-
tional Conference On Artificial Intelligence Testing. IEEE, 2019, pp.
89–90.

[34] Z. Li, X. Ma, C. Xu, J. Xu, C. Cao, and J. Lu, “Operational calibration:
debugging confidence errors for dnns in the field,” in 28th ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, 2020, pp. 901–913.

[35] H. Do and G. Rothermel, “On the use of mutation faults in empirical
assessments of test case prioritization techniques,” IEEE Trans. Software
Eng., vol. 32, no. 9, pp. 733–752, 2006.

[36] C. Henard, M. Papadakis, M. Harman, Y. Jia, and Y. L. Traon, “Compar-
ing white-box and black-box test prioritization,” in Proceedings of the
38th International Conference on Software Engineering. ACM, 2016,
pp. 523–534.

[37] S. Yoo, M. Harman, P. Tonella, and A. Susi, “Clustering test cases
to achieve effective and scalable prioritisation incorporating expert
knowledge,” in Proceedings of the Eighteenth International Symposium
on Software Testing and Analysis. ACM, 2009, pp. 201–212.

[38] D. D. Nardo, N. Alshahwan, L. C. Briand, and Y. Labiche, “Coverage-
based test case prioritisation: An industrial case study,” in Sixth IEEE
International Conference on Software Testing, Verification and Valida-
tion. IEEE Computer Society, 2013, pp. 302–311.

[39] C. Fang, Z. Chen, K. Wu, and Z. Zhao, “Similarity-based test case
prioritization using ordered sequences of program entities,” Softw. Qual.
J., vol. 22, no. 2, pp. 335–361, 2014.

[40] W. Sun, Z. Gao, W. Yang, C. Fang, and Z. Chen, “Multi-objective test
case prioritization for GUI applications,” in Proceedings of the 28th
Annual ACM Symposium on Applied Computing. ACM, 2013, pp.
1074–1079.

[41] K. Zhai, B. Jiang, and W. K. Chan, “Prioritizing test cases for regression
testing of location-based services: Metrics, techniques, and case study,”
IEEE Trans. Serv. Comput., vol. 7, no. 1, pp. 54–67, 2014.

[42] J. Chen, Y. Bai, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and B. Xie,
“Test case prioritization for compilers: A text-vector based approach,”
in 2016 IEEE international conference on software testing, verification
and validation. IEEE, 2016, pp. 266–277.

[43] J. Chen, Y. Bai, D. Hao, Y. Xiong, H. Zhang, and B. Xie, “Learning to
prioritize test programs for compiler testing,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering. IEEE, 2017, pp.
700–711.

[44] J. Chen, G. Wang, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and
X. Bing, “Coverage prediction for accelerating compiler testing,” IEEE
Transactions on Software Engineering, 2018.

[45] J. Chen, “Learning to accelerate compiler testing,” in Proceedings of
the 40th International Conference on Software Engineering: Companion
Proceeedings, 2018, pp. 472–475.

[46] J. Chen, J. Patra, M. Pradel, Y. Xiong, H. Zhang, D. Hao, and L. Zhang,
“A survey of compiler testing,” ACM Computing Surveys, vol. 53, no. 1,
pp. 1–36, 2020.

[47] Y. Lou, D. Hao, and L. Zhang, “Mutation-based test-case prioritization in
software evolution,” in 26th IEEE International Symposium on Software
Reliability Engineering, 2015, pp. 46–57.

[48] D. Shin, S. Yoo, M. Papadakis, and D. Bae, “Empirical evaluation of
mutation-based test case prioritization techniques,” Softw. Test. Verifica-
tion Reliab., vol. 29, no. 1-2, 2019.

[49] Z. Wang, M. Yan, J. Chen, S. Liu, and D. Zhang, “Deep learning library
testing via effective model generation,” in The 28th ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2020, pp. 788–799.

[50] S. Khalid, T. Khalil, and S. Nasreen, “A survey of feature selection and
feature extraction techniques in machine learning,” in 2014 Science and
Information Conference. IEEE, 2014, pp. 372–378.

[51] D. Pruthi, B. Dhingra, and Z. C. Lipton, “Combating adversarial
misspellings with robust word recognition,” in Proceedings of the 57th
Conference of the Association for Computational Linguistics, 2019, pp.
5582–5591.

[52] J. Ebrahimi, A. Rao, D. Lowd, and D. Dou, “Hotflip: White-box
adversarial examples for text classification,” in Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics.
Association for Computational Linguistics, 2018, pp. 31–36.

[53] J. Ebrahimi, D. Lowd, and D. Dou, “On adversarial examples for
character-level neural machine translation,” in Proceedings of the 27th
International Conference on Computational Linguistics. Association
for Computational Linguistics, 2018, pp. 653–663.

[54] J. Gao, J. Lanchantin, M. L. Soffa, and Y. Qi, “Black-box generation
of adversarial text sequences to evade deep learning classifiers,” in
IEEE Symposium on Security and Privacy Workshops. IEEE Computer
Society, 2018, pp. 50–56.

[55] S. Eger, G. G. Sahin, A. Rücklé, J. Lee, C. Schulz, M. Mesgar,
K. Swarnkar, E. Simpson, and I. Gurevych, “Text processing like
humans do: Visually attacking and shielding NLP systems,” CoRR, vol.
abs/1903.11508, 2019.

[56] G. Jahangirova and P. Tonella, “An empirical evaluation of mutation
operators for deep learning systems,” in 13th IEEE International Con-
ference on Software Testing, Validation and Verification. IEEE, 2020,
pp. 74–84.

[57] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li,
Y. Liu, J. Zhao et al., “Deepmutation: Mutation testing of deep learning
systems,” in 2018 IEEE 29th International Symposium on Software
Reliability Engineering. IEEE, 2018, pp. 100–111.

[58] J. Dai and Q. Xu, “Attribute selection based on information gain ratio in
fuzzy rough set theory with application to tumor classification,” Applied
Software Computing, vol. 13, no. 1, pp. 211–221, 2013.

[59] A. Grotov and M. de Rijke, “Online learning to rank for information
retrieval: SIGIR 2016 tutorial,” in Proceedings of the 39th International
ACM SIGIR conference on Research and Development in Information
Retrieval. ACM, 2016, pp. 1215–1218.

[60] C. Moreira, P. Calado, and B. Martins, “Learning to rank for ex-
pert search in digital libraries of academic publications,” CoRR, vol.
abs/1302.0413, 2013.

[61] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

[62] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, 05 2012.

[63] “Mnist,” Accessed: 2020. [Online]. Available: http://yann.lecun.com/
exdb/mnist/

[64] M. Long, J. Wang, G. Ding, J. Sun, and P. S. Yu, “Transfer feature
learning with joint distribution adaptation,” in 2013 IEEE International
Conference on Computer Vision, 2014.

[65] “Coil-20,” Accessed: 2020. [Online]. Available: https://www.cs.
columbia.edu/CAVE/software/softlib/coil-20.php

[66] “Pie,” Accessed: 2020. [Online]. Available: http://www.cs.cmu.edu/afs/
cs/project/PIE/MultiPie/Multi-Pie/Home.html

[67] “Driving,” Accessed: 2020. [Online]. Available: https://udacity.com/
self-driving-car

[68] X. Li and D. Roth, “Learning question classifiers,” in 19th International
Conference on Computational Linguistics, 2002.

[69] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning word vectors for sentiment analysis,” in Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies. Association for Computational Lin-
guistics, June 2011, pp. 142–150.

[70] T. A. Almeida, J. M. G. Hidalgo, and A. Yamakami, “Contributions
to the study of sms spam filtering: New collection and results,” in
Proceedings of the 11th ACM Symposium on Document Engineering.
Association for Computing Machinery, 2011, p. 259–262.

[71] A. Warstadt, A. Singh, and S. R. Bowman, “Neural network acceptability
judgments,” Trans. Assoc. Comput. Linguistics, vol. 7, pp. 625–641,
2019.

[72] T. Davidson, D. Warmsley, M. Macy, and I. Weber, “Automated hate
speech detection and the problem of offensive language,” in Proceedings
of the 11th International AAAI Conference on Web and Social Media,
ser. ICWSM ’17, 2017, pp. 512–515.

[73] “Kddcup99,” Accessed: 2020. [Online]. Available: http://kdd.ics.uci.
edu/databases/kddcup99/kddcup99.html

[74] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples
in the physical world,” in 5th International Conference on Learning
Representations, 2017.

[75] N. Papernot, P. D. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,” in
IEEE European Symposium on Security and Privacy, 2016, pp. 372–387.

[76] “Keras,” Accessed: 2020, https://keras.io/.
[77] J. Chen, Y. Lou, L. Zhang, J. Zhou, X. Wang, D. Hao, and L. Zhang,

“Optimizing test prioritization via test distribution analysis,” in Proceed-
ings of the 2018 ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2018, pp. 656–667.

[78] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel, “Prioritizing
test cases for regression testing,” in Proceedings of the International
Symposium on Software Testing and Analysis. ACM, 2000, pp. 102–
112.

[79] F. Wilcoxon, S. Katti, and R. A. Wilcox, “Critical values and probability
levels for the wilcoxon rank sum test and the wilcoxon signed rank test,”
Selected tables in mathematical statistics, vol. 1, pp. 171–259, 1970.

[80] M. Alzantot, B. Balaji, and M. B. Srivastava, “Did you hear that?
adversarial examples against automatic speech recognition,” CoRR, vol.
abs/1801.00554, 2018.

[81] M. Cissé, Y. Adi, N. Neverova, and J. Keshet, “Houdini: Fooling
deep structured visual and speech recognition models with adversarial
examples,” in Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems, 2017,
pp. 6977–6987.

